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1 Scope and field of application

Whenever a measurement of flowrate (discharge) is
made the value obtained from the experimental data
is simply the best possible estimate of the true
flowrate. In practice, the true flowrate may be slightly
greater or less than this value.

This International Standard details step by step
procedures for the evaluation of uncertainties in
individual flow measurements arising from both
random and systematic errors and for the propagation
of these errors into the uncertainty of the test results.
These procedures enable the following processes to be
effected:

a) Estimation of the accuracy of the test
results derived from flowrate measurement

b) Selection of a proper measuring method
and devices to achieve a required level of
accuracy of flowrate measurement

¢) Comparison of the results of measurement

d) Control_ over the sources of errors contrib-
- uting to a total uncertainty

e) Refinement of the results of measurement
as data accumulate

NOTE. It is assumed that the measurement process
is carefully controlled and that all calibration correc-
tions have been applied.

This standard describes the calculations required in
order to arrive at an estimate of the interval within
which the true value of the flowrate may be expected
to lie. The principle of these calculations is applicable
to any flow measurement method, whether the flow is
in open channel or in closed conduit. Although this
standard has been drafted taking mainly into account
the sources of error due to the instrumentation, it
shall be emphasized that the errors due to the flow
itself (velocity distribution, turbulence, etc...) and to
its effect on the method and on the response of the
instrument can be of great importance with certain
methods of flow measurement (see 5.7). Where a
particular device or technique is used, some simplifi-
cations may be possible or special reference may have
to be made to specific sources of error not identified
in this Standard. Therefore reference should be made
to the “Uncertainty of measurement” clause of the
appropriate International Standard dealing with that
device or technique.
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2 References

ISO 748 Liquid flow measurement in open channels
— velocity area methods

ISO 772 Liquid flow measurement in open channels
— vocabulary and symbols

ISO 3534 Statistics — vocabulary and symbols (1977)

ISO 4006 Measurement of fluid flow in closed con-
duits — vocabulary and symbols

ISO 4360 Liquid flow measurement in open channels
by weirs and flumes — triangular profile weirs

ISO 5725 Precision of test methods — determination
of repeatability and reproducibility by inter-laborato-
ry tests

3 Glossary and Notation

3.1 Notation

B The systematic error, the fixed, or
constant component of the total error, 3.

o The total error.
£ Random (precision) error
B The estimate of the upper and lower limit

of the symmetrical systematic error, f3.

X X .
B = Vauj alli Bs

B*, B~ The upper and lower limits of a non-
symmetrical systematic error.
B.. An estimate of the upper limit of an

elemental systematic error.. The j
subscript indicates the process, i.e.

j =1 calibration error,
= 2 data acquisition
= 3 data reduction

The i subscript is the number assigned to
a given elemental source of error. If i is
more than a single digit, the comma is
used between i and j.
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The mean value of a variable.

The number of coefficients estimated in
regression analysis

The difference between measurements
Calibration constant

Number of redundant instruments or
tests

Sample size

The sample correlation is an estimate of
the true, unknown population correlation
coefficient, p.

The variance, the square of the standard
deviation

Population mean.
An unbiased estimate of the variance, o2.

An estimate of the experimental standard
deviation of Ar =r, —r,

= \jsfl-('- s,
The estimate of the experimental
standard deviation from one elemental
source. The subscripts are the same as
the elemental systematic error limits in
the foregoing.

n

1
Estimate of the experimental standard
deviation of the variable Y

S = ;ZS--Z
i

M N
)2 (Xﬁ-K)Q

i=1 j=1

= MN-T]

Student’s statistical parameter at the 95
percent confidence level. The degrees of
freedom, v, of the sample estimate of the
standard deviation is needed to obtain
the t value.

Ut U™

i

<

Yi

Subscripts

ADD

RSS

The upper and lower limits of a non-
symmetrical uncertainty interval.

= B + ty S;, provides ~ 99% coverage.

= B? +Htgs Sz )2;

coverage.

provides ~ 95%

Arithmetic mean of the data values; x;

Sample average of measurements

i=1
X =N
The value of x at the i-th data point

The j-th independent variable (in multi-
ple linear regression)

The value of x;at the i-th data point

The value of y predicted by the equation
of the fitted curve.

Arithmetic mean of the n measurements
of the variable Y.

The value of y at the i-th data point

The number of the error source within
the error category; also, a general index.

The additive model

The root-sum-square model

NOTE — These statistical symbols are in accor-
dance with IS03534 Statistics — Vocabulary and

Symbols



Mean Measured

True Value of

Spurious Error

Quantity (Unknown)

3.2 Glossary

R | Value of Measured Quantity
‘ -+ U
Random —— e —
j‘?’/_ Error U Random Uncertainty
+ = u+
Value of QuantiW——T-sg— _ _83_ 4 Eg— —8;3- —%?)—- -t —— Assessed With ~
X % R 5 U Specific Bias Error
—_ _____ 1 confidence Level Is Unseen
Within Limits
~
_l " i d
Systematic Error Probabiiity Density
Time During Which a Constant | Time
Value of the Quantity Y Is
Being Assessed -y
FDA 289822
~ Figure 1 —
3.2.17 bias — see 3.2.36 and figure 2.
True Value
Average

Bias

Figure 2 — Bias
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3.2.2 bias limit

The estimate of the upper limit of the bias (systemat-
ic) error.

3.2.3 calibration curve

The locus of points obtained by plotting some index
of the calibration response of a flowmeter against
some function of the flowrate.

3.2.4 confidence interval

The interval within which the true value is expected
to lie, with a specified confidence level.

r = 0,0

r'=0.6

3.2.5 correction

A value which must be added algebraically to the
indicated value to obtain the corrected result. It is
numerically the same as a known error, but of
opposite sign.

3.2.6 correlation coefficient

A measure of the linear interdependence between two
variables. It varies between —1 and +1 with the
intermediate value of zero indicating the absence of
correlation. The limiting values indicate perfect nega-
tive (inverse) or positive correlation {figure 3).

r=0.8

re1,0

-
r=20.0

¢t A

re=-1,0 "

Figure 3 — Correlation Coefficients

3.2.7 coverage

The percentage frequency that an interval estimate of
a parameter contains the true value. Ninety-five
percent confidence intervals provide 95% coverage of
the true value. That is, in repeated sampling when a
95% confidence interval is constructed for each
sample, over the long run the intervals will contain
the true value 95% of the time.

3.2.8 distribution — see frequency distribution
3.2.9 error

In a result, the difference between the measured and
true values of the quantity measured.
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3.2.10 estimate -

A value calculated from a sample of data as a
substitute for an unknown population parameter. For
example, the experimental standard deviation (S) is
the estimate which describes the population standard
deviation (o).

3.2.11 fossilization

In the calibration process, live, random errors may
become fixed, systematic (fossilized) errors when only
a single calibration is relevant.

3.2.12 influence (sensitivity) coefficient

The error propagated to the result due to unit error in
the measurement. (See 7.4)



3.2.13 laboratory standard

An instrument which is calibrated periodically by the
primary test facility. The laboratory standard may
also be called a transfer standard.

3.2.14 mean — see average value
3.2.15 measurement error

The collective term meaning the difference between
the true value and the measured value. It includes
both systematic and random components.

3.2.16 Monte Carlo simulation

A mathematical model of a system with random
elements, usually computer adapted, whose outcome
depends on the application of randomly generated
numbers.

3.2: 17 observed value

The value of a characteristic determined as the result
of an observation or test.

3.2.18 standard error of the mean

An estimate of the scatter in a set of sample means
based on a given sample of size N. Then the standard

error of the mean is: S/{N

3.2.19 statistical quality control chart

A chart on which limits are drawn and on which are
plotted values of any statistic computed from succes-
sive samples of a production.

The statistics which are used (mean, range, percent
defective, etc.) define the different kinds of control
charts.

NOTES: 1) Systematic errors and their causes may
be known or unknown.

3.2.20 Taylor’s series

A power series to calculate the value of a function at a
point in the neighborhood of some reference point.
The series expresses the difference or differential
between the new point and the reference point in
terms of the successive derivatives of the function. Its
form is:

f*(a) +R,

>
.n',"

where f T (a) denotes the value of the r-th derivative of
f(x) at the reference point X = a. Commonly, if the
series converges, the remainder R  is made infinitesi-
mal by selecting an artibrary number of terms and
usually only the first term is used.

3.2.21 uncertainty

An estimate attached to an observation or a test
result which characterizes the range of values within
which the true value is asserted to lie. Note: Uncer-
tainty of a measurement comprises, in general, many
components. Some of these components may be
estimated on the basis of the statistical distribution of
the results of a series of measurements and can be
characterized by the experimental standard deviation.
Estimates of other components can only be based on
experience or other information.

3.2.22 Welch-Satterthwaite degrees of freedom

A method for estimating degrees of freedom of the
result when combining experimental standard devia-
tions with unequal degrees of freedom.

4 General principles of measurement uncertainty
analysis

4.1 Nature of errors

All measurements have errors even after all known
corrections and calibrations have been applied. The
errors may be positive or negative and may be of a
variable magnitude. Many errors vary with time.
Some have very short periods while others vary daily,
weekly, seasonally or yearly. Those which remain
constant or apparently constant during the test are
called biases, or systematic errors. The actual errors
are rarely known; however, upper bounds on the
errors can be estimated. The objective is to construct
an uncertainty interval within which the true value
will lie.

Errors are the differences between the measurements
and the true value which is always unknown. The
total measurement error, 6, is divided into two
components: $, a fixed systematic error and a random
error, g, as shown in figure 4. In some cases, the true
value may be arbitrarily defined as the value that
would be obtained by a specific metrology laboratory.



Uncertainty is an estimate of the error which in most
cases would not be exceeded. There are three types of
error to be considered:

a) random errors — see 4.2

b) systematic (bias) errors — see 4.3

c)

spurious errors or blunders (assumed zero)

It is rarely possible to give an absolute upper limit to
the value of the error. It is, therefore, more practica-
ble to give an interval within which the true value of
the measured quantity can be expected to lie with a
suitably high probability. This “uncertainty interval”
is shown as [X - U, X + U] in figure 5 (the interval
is twice the calculated uncertainty).

Since measurement systems are subject to two types
of errors, systematic and random, it follows that an

—seed.4 accurate measurement is one that has both small
random and small systematic errors (see figure 6).
Average
True measurement
Value
Singie
Ssp"'é measuremaent

SxTotal errer

\

B =Bias erro rZ .

__7.

—~ €=Random error

Measurement ——e—

Figure 4 — Measurement error

MEASURED
VALUE (X)
LOWER | _ -y +U UPFER
LIMIT LIMIT
TRUE VALUE
s
{ ERROR
X-U X X+U

Figure 5 — Uncertainty interval X - U
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Measurement Error (Systematic, Random, and Accuracy)

True Value and Average
Small random error
Zero systematic

error
accurate

True Value  Average

Small random error
Large systematic
emror'
inaccurate

Measurement ————

True Value and Average

Large random error
Zero systematic
error
inaccurate

Measurement ————— g

Figure 6 — Measurement error

4.2 Random error (precision)

Random errors are sometimes referred to as precision
errors. Random errors are caused by numerous, small,
independent influences which prevent a measurement
system from delivering the same reading when sup-
plied with the same input value of the quantity being
measured. The data points deviate from the mean in
accordance with the laws of chance, such that the
distribution usually approaches a normal distribution
as the number of data points is increased. The
variation between repeated measurements is called
random or precision error. The standard deviation
(o), figure 7, is used as a measure of the random error,
€. A large standard deviation means large scatter in
the measurements. The statistic (8) is calculated
from a sample to estimate the standard deviation and
is called the experimental standard deviation.

3 (X, - X)

i=1

N-1 (1)

Where
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Measurement ——— o

True Value  Average

Large random error
Large systematic
error
inaccurate

Measurement ———

N is the number of measurements and
X is the average value of individual
measurements, X.

For the normal. distribution, the interval
X + ty; S/yN will include the true mean, y, approx-

imately 95% of the time. When the sample size is
small, it is necessary to use the Student’s t values at
the 95% level. For sample sizes equal to or greater
than 30, two experimental standard deviations (2S)
are used as an estimate of the upper limit of random
error. This is explained in Annex C. . - :

The random error in the result can be reduced by
making as many measurements as possible of the
variable and using the arithmetic mean value, since
the standard deviation of the mean of N independent

measurements is ‘/N times smaller than the stand-
ard deviation of the measurements themselves.

VN 3)



1 ff
Frequency of wr |
observation 4

Average
Messurement

Also called
* Aepentsbility ervor
+ Rendom ecror
« Sampilng error

Figure 7 — Random error

4.3 Systematic error (bias)

The second component of the total error is the
systematic error, . At each flow level this error is
constant for the duration of the test (figure 4). In
repeated measurements of a given sample, each
measurement has the same systematic error. The
systematic error can be determined only when the
measurements are compared with the true value of
the quantity measured and this is rarely possible.

The original ISO 5168 had three components of error-
random, systematic and systematic that varies with
flow level. Within this revision, only the first two
components are used to simplify the analysis, recog-
nizing that both components may vary at different
levels of flow.

Every effort shall be made to identify and account for
all significant systematic errors. These may arise
from imperfect (1) calibration corrections, (2) instru-
mentation installation, and (3) data reduction, and
may include (4) human errors and (5) method errors.
As the true systematic error is never known, an upper
limit, B, is used in the uncertainty analysis.

In most cases, the systematic error, B, is equally likely
to be plus or minus about the measurement. That is,
it is not known if the systematic error is positive or
negative, and the systematic error limit reflects this
as + B. The systematic error limit, B, is estimated as
an upper limit of the systematic error, .
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4.4 Spurious errors

These are errors such as human mistakes, or instru-
ment malfunction, which invalidate a measurement;
for example, the transposing of numbers in recording
data or the presence of pockets of air in leads from a
water line to a manometer. Such errors cannot be

. treated with statistical analysis and the measurement

should be discarded. Every effort should be made to
eliminate spurious errors to properly control the
measurement process.

To ensure control, all measurements should be moni-
tored with statistical quality control charts. Drifts,
trends, and movements leading to out-of-control
situations should be identified and investigated. His-
tories of data from calibrations are required for
effective control. It is assumed herein that these
precautions are observed and that the measurement
process is in control; if not, the methods described are
invalid.

After all obvious mistakes have been corrected or
removed, there may remain a few observations which
are suspicious solely because of their magnitude.

For errors of this nature, the statistical outlier tests
given in annex D should be used. These tests assume
the observations are normally distributed. It is neces-
sary to recalculate the experimental standard devia-
tion of the distribution of observations whenever a
datum is discarded as a result of the outlier test. It



should also be emphasized that outliers should not be
discarded unless there is an independent technical
reason for believing that spurious errors may exist:
data should not lightly be thrown away.

4.5 Combining elemental errors

The test objective, test duration and the number of
calibrations related to the test affect the classification
of errors into systematic and random error compo-
nents. Guidelines will be presented in clause 6.

After all elemental errors have been identified and
estimated as calibration, data acquisition, data reduc-
tion, methodic errors and subjective errors, a method
for combining the elemental random and systematic
error limits into the random and systematic error
limits of the measurement is needed. The root-sum-
square or quadrature combination is recommended.

S = z r s
Valj alli o8
B - I I B
allj alli (5)
4.6 Uncertainty of measurements

The measurement uncertainity analysis will be com-
pleted when:

The systematic error limits and standard
deviations of the measure have been propa-
gated to errors in the test result, keeping
systematic and random errors separate

a)

b) If small samples are inveived, an estimate
of the degrees of freedom of the experimen-
tal standard deviation of the test result has
been calculated from the Welch-Satterth-
waite formula. (see annex C)

¢} The random and systematic errors are
combined into a single number to express a

reasonable limit for error.

For simplicity of presentation, a single number, U, is
needed to express a reasonable limit of error. The
single number, some combination of the systematic
error and random error limits, must have a simple
interpretation (like the largest error reasonably ex-
pected), and be useful without complex explanation.
For example, the true value of the measurement is
expected to lie within the interval

10

X -U,X+U]
X +] ©

Since systematic uncertainties are based on judge-
ment and not on data, there is no way of combining
systematic and random uncertainties to produce a
single uncertainty figure with a statistically rigorous
confidence level. However, since it is accepted that a
single figure for the uncertainty of a measurement is
often required, two alternative methods of combina-
tion are permitted.

1) Linear addition:

Uspp = B +t5 S5 7

2) Root-sum-square combination:

B2 + (tgs S;)2

URSS =

(8)

Typically, U,pp will have a coverage of approximate-
ly 99 percent, and Upgg will have a coverage of
approximately 95 percent. (See Annex F.)

where B is the systematic error limit from equation
(5) and S; is the experimental standard deviation of
the mean (equations (4) and (3)). If large samples (N
> 30) are used to calculate S, the value 2.0 may be
used for tys for simplicity. If small samples (N =< 30)
are used to calculate S, the methods in annex C are
required. There are three situations “where it is
possible to develop a statistical confidence interval
for the uncertainty interval:

If the systematic error limits are based on
interlaboratory comparisons, the method is
presented in ISO 5725.

a)

b) If the distribution of the systematic error
limits are assumed to have a rectangular
distribution, the method is shown in annex

E.

If the systematic error is judged to be
negligible compared to the random error,
the uncertainty interval is the test result
plus and minus ty; S;, which is a 95%
confidence interval.

c)



4.7 Propagation of measurement errors to test
result errors

If the test result is a function of several measure-
ments, the random error and systematic error limits
of the measurements must be combined or propagated
to the test result using sensitivity factors, 0, that
relate the measurement to the test result. Small
sample methods are given in annex C.

In general, for m measurements, the random error
and systematic error of the test result is obtained as
follows:

Sp = T (8, S.)

* all m 9)
By = >~ (8, B\

N J all m ( ) (10)

The uncertainty intervals for the test result are
formed in the same manner as described for the
measurement in 4.6.

and after

4.8 Uncertainty before

measurement

analysis

Uncertainty analysis before measurement allows cor-
rective action to be taken prior to the test to reduce
uncertainties when they are too large or when the
difference to be detected in the test is the same size or
smaller than the predicted uncertainty. Uncertainty
analysis before the test can identify the most cost
effective corrective action and the most accurate
measurement method.

The pretest uncertainty analysis is based on data and
information that exists before the test, such as
calibration histories, previous tests with similar in-
strumentation, prior measurement uncertainty analy-
sis, expert opinions and, if necessary, special tests.
With complex tests, there are often alternatives to
evaluate prior to the test such as different test
designs, instrumentation arrangements, alternative
calculation procedures and concommitant variables.
Corrective action resulting from this pretest analysis
may include

a) Improvements to instrumentation if the
errors are unacceptable
b) selection of a different measurement or

calibration method
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c¢) repeated testing and/or increased sample
sizes if the random errors are unacceptably
high. The standard error of the mean is
reduced as the number of samples used to
calculate the mean is increased.

d) Instead of repeated testing the test dura-
tion can be extended, in order to average
the output scatter (noise) of the flowmeter,
resulting in a small random error per

observation.

(example — ultrasonic and vortex shedding
meters may have to be calibrated against a
master meter allowing longer test times
than allowed by a micro prover.)
e) Rotating flowmeters usually generate an
output showing a periodic cycle superim-
posed on an average meter factor. In this
case the test duration shall be matched to
an integer multitude of half or full periodic
intervals in order to obtain the shortest test
times. :

(example — In calibrating positive dis-
placement meters with a small volume
micro prover, the double chronometry
pulses shall be compared to an integer of
pulses generated per revolution of the me-
ter.)

Several iterations may be required in order to obtain
the required accuracy.

Posttest analysis is based on the actual measurement
data. It is required to establish the final uncertainty
intervals. It is also used to confirm the pretest
estimates and/or to identify data validity problems.
When redundant instrumentation or calculation
methods are available, the individual uncertainty
intervals should be compared for consistency with
each other and with the pretest uncertainty analysis.
If the uncertainty intervals do not overlap, a problem
is indicated. The posttest random error limits should
be compared with the pretest predictions.

5 Identification and classification of elemental
measurement errors

5.1 Summary of procedure

Make a complete, exhaustive list of every possible
measurement error for all measurements that affect



the end test result. For convenience, group them by
some or all of the following categories: (1) calibration,
{2) data acquisition, (3) data reduction, (4) errors of
method and (5) subjective or personal. Within each
category, there may be systematic and/or random
errors.

5.2 Systematic (bias) vs. random (precision)

Systematic errors are those which remain constant in
the process of measurement.

Typical examples of systematic errors of flow-rate
measurements are:

a) errors from a single flowmeter calibration

b) errors of determination of the constants in
the working formula of a measuring
method

¢} errors due to truncating instead of rounding

off the results of measurement.

Where the value and sign of a systematic error are
 known, it is assumed to be corrected (the correction
being equal in value and opposite in sign to the
systematic error). Inaccuracy of the correction results
in a residual systematic error.

Random errors are those that produce variation (not
predictable) in repeated measurements of the same
quantity.

Typical random errors associated with flowrate mea-
surement are those caused by inaccurate reading of
the scale of a measuring instrument or by the scatter
of the output signal of an instrument.

The effect of random errors may be reduced by
averaging multiple results of the same value of the
quantity.

The preliminary decision to determine if a given
elemental source contributes to systematic error,
random error or both, is made by adopting the
recommendation: the uncertainty of a measurement
should be put into one of two categories depending on
how the uncertainty is derived. A random uncertainty
is derived by a statistical analysis of repeated mea-
surements while a systematic uncertainty is estimat-
ed by nonstatistical methods. This recommendation
avoids a complex decision and keeps the statistical
estimates separate from the judgement estimates as
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long as possible. The decision is preliminary and will
be reviewed after consideration of the defined mea-
surement process.

5.3 Measurement error categorization

Possible error sources can be divided arbitrarily into
three to five categories:

1)  Calibration Errors (see 5.4)

2) Data Acquisition Errors (see 5.5)
3) Data Reduction Errors (see 5.6)
4)  Errors of Method (see 5.7)

5)  Subjective or Personal (see 5.8)

The size and complexity of the measurement uncer-
tainty analysis may lead to the use of any or all of
these categories.

In most cases, metrological maintenance (calibration,
verification, certification) of flowmeters, flow-rate
measurements and processing of the data are done by
different personnel. To control the possible sources of
errors, it is advisable to relate them to the stages of
preparation, measurement and processing of the data.

In such cases, it is advisable to classify errors into:

a) calibration errors (see 5.4)

b) errors of measurement or data acquisition
errors (see 5.5)

¢) errors of processing the measurement data

or data reduction errors (see 5.6)

5.4 Calibration errors

The major purpose of the calibration process is to
determine systematic errors in order to eliminate
them. The calibration process exchanges the large
systematic error of an uncalibrated or poorly calibrat-
ed instrument for the smaller combination of the
systematic error of the standard instrument and the
random error of the comparison. This exchange of
errors is fundamental and is the basis of the notion
that the uncertainty of the standard should be
substantially less than that of the test instrument.

Each calibration in the hierarchy constitutes an error
source. Figure 8 is a typical transducer calibration
hierarchy. Associated with each comparison in the
calibration hierarchy is a pair of elemental errors.
These errors are the systematic error limit and the



sample standard deviation in each process. Note that
these elemental errors may be cumulative or indepen-
dent. For example, By, may include B,;. The error

Standards Laboratory SL

inter-Laboratory Standard

sources are listed in table 1. The second digit of the
subscript indicates the error category, i.e. 1 indicates
calibration error.

-
I 1 L 1

(ILS) }{ (ILS) (ILS) (ILS)

-
I 1. 1
(TS) {] (TS)

Transfer Standard | (TS)

—

Working Standard | (WS)

(WS)

{

Measurement (M1)

Ml
Instrument (M1

(M1)

- Figure 8 — Basic measurement calibration hierarchy

Table 1 — Calibration hierarchy error sources

Experimental | Degrees
Systematic standard of

Calibration error deviation freedom
SL - ILS B, Si v
ILS - TS By, So; Vay
TS - WS By, S, Va;
WS - Ml By Su Vi
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5.8 Data acquisition errors

Figure 9 illustrates some of the error sources associ-
ated with a typical pressure data acquisition system.
Data are acquired by measuring the electrical output
resulting from pressure applied to a strain gage type
pressure measurement instrument. Other error
sources, such as probe errors, including installation
effects, and environmental effects, also may be
present. The effects of these error sources should be
determined by performing overall system calibrations,
comparing known applied pressures with measured
values. However, should it not be possible to do this,
then it is necessary to evaluate each of the elemental
errors and combine them to determine the overall
error.



Pressure
Transducer

Excitation
Voitage .
Source
Signal Recording
Conditioning Device

Measurement Signal
Figure 9 — Data acquisition system

Some of the data acquisition error sources are listed
in table 2. Symbols for the elemental systematic and
random errors and for the degrees of freedom are
shown. Note these elemental errors are independent,

not cumulative.

Table 2 — Data acquisition error sources

Experimental | Degrees
Systematic standard of

Error Source error deviation freedom
Excitation Voltage B, Sy Via
Signal Conditioning By Sae Voo
Recording Device B3, Sss Vaa
Pressure Transducer By Ss Vio
Probe Errors B,y Sy Vs
Environmental Effects By Sen Ve
Spacial Averaging By, Ss Vg

5.6 Data reduction errors

Computations on raw data produce output in engi-
neering units. Typical errors in this process stem
from curve fits and computational resolution. These
errors often are negligible.

Symbols for the data reduction error sources are

listed in table 3.

Table 3 — Data reduction error sources

Experimental | Degrees
Systematic standard of
Error source error deviation freedom
Curve Fit B S5 Vi3
Computational By Sy3 Vo3
Resolution

14

5.7 Errors of method

Errors of method are those associated with a particu-
lar measurement procedure (principles of use of
instruments) and also with the uncertainty of con-
stants used in calculations.

Some examples are errors from indirect methods of
flow rate measurement associated with physical inac-
curacy of the relationship between the measured
quantity and flow-rate, or with inaccuracy of the
constants in the relationship. These inaccuracies may
be due, for instance, to the fact that the flow
conditions prevailing during the measurement are not
identical to the conditions in which the calibration
has been carried out or for which a standardized
discharge coefficient has been established. In certain
methods of flow measurement (differential pressure
devices for instance), these sources of error arising
from the flow conditions are covered by the uncer-
tainty associated with the discharge coefficient, as far
as the installation conditions prescribed-in the stand-
ard are satisfied; if they are not, that Standard does
not apply. In other methods (velocity-area method for
instance), the uncertainty arising from the flow
conditions is identified as a component of the total
uncertainty; it shall be evaluated by the user in each
case and combined with the other elemental uncer-
tainties.

As a rule, errors of method have a systematic
character and can be determined in the course of
certification of a flow-rate measuring procedure.

5.8 Subjective errors

Subjective errors are caused by personal characteris-
tics of the operators who calibrate flowmeters, per-
form measurements and process the data. These can
include reading errors and miscalculations.



6 Estimation and presentation of elemental errors
6.1 Summary of procedure

Obtain an estimate of each error. If the data is
available to estimate the experimental standard devi-
ation, classify the error as a random error. Otherwise,
classify it as a systematic error.

Review the test objective, test duration and number
of calibrations that will affect the test result. Make
the final classification of elemental errors for each
measurement. If an error increases the scatter in the
measurement result in the defined test, it is a random
error; otherwise, it is a systematic error.

6.2 Calculate the experimental standard deviation

There are many ways to calculate the experimental
standard deviation:

If the parameter to be measured can be held
constant, a number of repeated measure-
ments can be used to evaluate equation (1)

X-X

" N<-1

a)

M=

S =
(10)

b) If there are M redundant instruments or M
redundant measurements and the parame-
ter to be measured can be held constant to
take N repeat readings, the following
pooled estimate of the experimental stand-
ard deviation for individual readings can be

used:
£ 3 (x, - Xy
Spooled =

MN-1)

For the experimental standard deviation of
the average value of the parameter

Spooled
If a pair of instruments (providing mea-
surements X,; and X,)) which have the
same experimental standard deviation are

used to estimate a parameter that is not
constant with time, the difference between

(11)

S: =
(12)

c)
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the readings, A, may be used to estimate the
experimental standard deviation of the
individual instruments as follows:

(13)

where

A = X - Xy

If the degrees of freedom are less than 30, the small
sample methods shown in annex C are required.

6.3 Estimate the systematic error limit

In spite of applying all known corrections to over-
come imperfections in calibration, data acquisition
and data reduction processes, some systematic errors
will probably remain. To determine the exact system-
atic error in a measurement, it would be necessary to
compare the true value and the measurements. How-
ever, as the true value is unknown, it is necessary to
carry out special tests or utilize existing data that will
provide systematic error information. The following
examples are given in order of preference.

Interlaboratory or interfacility tests make
it possible to obtain the distribution of
systematic errors between facilities (Refer-
ence ISO 5725).

a)

b) Comparisons of standards with instru-
ments in the actual test environment may
be used.

¢) Comparison of independent measurements
that depend on different principles can
provide systematic error information. For
example, in a gas turbine test, airflow can
be measured with (1) an orifice, (2} a
bellmouth nozzle, (3) compressor speed-
flow rig data, (4) turbine flow parameters
and (5) jet nozzle calibrations.

d) When it is known that a systematic error
results from a particular cause, calibrations
may be performed allowing the cause to
perturbate through its complete range to
determine the range of systematic error.



e) If there is no source of data for systematic
error, the estimate must be based on judg-
ment. An estimate of an upper limit of the
systematic error is needed. Instrumentation
manufacturers’ reports and other refer-
ences may provide information. It is impor-
tant to distinguish between the ‘“estimate”
of an upper limit on systematic error
obtained by this method and the more
reliable estimate of a random error arrived
at by analyzing data. There is a general
tendency to underestimate systematic un-
certainties when a subjective approach is
used, partly through human optimism and
partly through the possibility of overlook-
ing the existence of some sources of system-
atic error. Great care is therefore necessary
when quoting systematic error limits.

Sometimes the physics of the measurement system
provide knowledge of the sign but not the magnitude
of the systematic error. For example, hot thermocou-
ples radiate and conduct thermal energy away from
the sensor to indicate lower temperatures. The sys-
. tematic error limits in this case are non-symmetrical,
i.e., not of the form = B. They are of the form B* for
the upper limit and B~ for the lower limit. Thus,
typical systematic error limits associated with a
radiating thermocouple could be:

B* = 0 degrees
B~ = —10 degrees

For elemental error sources, the interval from B¥ to
B~ must include zero.

6.4 Final erroi' classification based on the defined
measurement

Uncertainty statements must be related to a well
defined measurement process. The final classification
of errors into systematic (bias) and random (preci-
sion) depends on the definition of the measurement
process. Some of these considerations are:

a) Long versus Short Term Testing (see 6.4.1)

b) Comparative versus Absolute Testing (see
6.4.2)

¢) Averaging to Reduce Random Error (see
6.4.3)

6.4.1 Long versus short term testing

The calibration histories accumulated before or dur-
ing the testing period may influence the uncertainty
analysis.

1) When the instrumentation is calibrated
only once, all the calibration error is frozen
into systematic error. The error in the
calibration correction is a constant and
cannot increase the scatter in a test result.
Thus, the calibration error, made up in
general of systematic and fossilized random
errors, is considered to be all systematic
errors in this case.

2) If the test period is long enough that
instrumentation may be calibrated several
times or more and/or several test stands
are involved, the random error in the
calibration hierarchy (see 5.4) should be
treated as contributing to the overall exper-
imental standard deviation. The experi-
mental standard deviations may be derived
from calibration data. .

6.4.2 Comparative versus absolute testing

The objective of a comparative test is to determine,
with the smallest measurement uncertainty possible,
the net effect of a design change. The first test is run
with the standard or baseline configuration. The
second test is run with the design change. The
difference between the results of these tests is an
indication of the effect of the design change. As long
as only the difference or net effect between the two
tests is considered, all systematic errors, being fixed,
will cancel out. The measurement uncertainty will be
composed of random errors only.

The uncertainty of the back-to-back tests can be
considerably reduced by repeating them several times
and averaging the differences.

All errors in a comparative test arise from random
errors in data acquisition and data reduction. System-
atic errors are effectively zero. Since calibration
random errors have been considered systematic er-
rors, they also are effectively zero.

The test result is the difference in flow between two
test results, r; and r,.



Ar = r1,—1, (14)

and

Sar = VS?[-!— ng = \/§Sr1

(15)

where S,_is the random error of the first test, the root
sum-square of the experimental standard deviations
from data acquisition and data reduction, and S:2 is
assumed to equal S’l'

6.4.3 Averaging to reduce random error

Averaging test results is often used to improve the
random uncertainty. Careful consideration should be
given to designing the test series to average as many
causes of variation as possible within cost constraints.
The design should be tailored to the specific situation.
For example, if experience indicates time-to-time and
rig-to-rig variations are significant, a design that
averages multiple test measurement results on one rig
on one day may produce optimistic random error
estimaies compared to testing several rigs, each
mounted several times, over a period of weeks. The
list of possibilities may include the above plus test
stand-to-test  stand, instrument-to-instrument,
mount-to-mount and environmental, fuel, power and
test crew variation. Historic data is invaluable for
studying these effects.* If the pretest uncertainty
analysis identifies unacceptably large error sources,
special tests to measure the effects should be consid-
ered.

* A statistical technique, analysis of variance (ANOVA) is useful for
partitioning total variance by cause.
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6.5 Example: a calibration constant

Assume a test meter is to be compared or calibrated
with a master meter at one flow level. The objective is
to determine a correction, called a calibration con-
stant, that will be added to the test meter observa-
tions when it is installed for test. This calibration
constant correction will make the test meter “read
like” the master meter. During the calibration, the
master meter is used to set the flow level as it is
usually more accurate than the test meter. To reduce
the calibration random error, N=13 comparisons will
be made and averaged. If the data were plotted, the
data might look like figure 10.

If the master meter systematic error limit from its
own calibration is judged to be no larger than By,
what will the test meter uncertainty be after calibra-
tion?

Define A; = Master Meter Reading; — Test Meter
Reading ;

Calibration Constant equals the average

by

K=A4=-—3

(16)

The sample standard deviation of the calibration
constant K is:

S - S _ Z(A—A)z
AN 13(12) amn

The fest meter is later installed in a test stand. Each
observation made on the test meter is corrected by
adding K. By this process, the error in K from the
calibration process is propagated to the corrected data
from the test stand.
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Master meter systematic error = By,
Calibration random error = Sy
Figure 10 — Calibration should compensate for test meter systematic error

If the defined measurement process is short, involving
a single calibration, K is constant and this error must
be a constant or systematic error. It includes the
systematic error in the master meter plus the random
error in the calibration process. The random error is
fossilized into systematic error. The fossilization is
indicated by an asterisk. We can estimate an upper
limit for this systematic error as:

v B+ (tss Sk)

B (18)

Where By, is the systematic error limit of the master
meter and tg; = 2.179 for 12 degrees of freedom
(annex C).)

This calibration systematic error limit would be

combined with systematic error limits from data

acquisition and data reduction to obtain the measure-
ment systematic error limit. There would also be
random error from these last two processes.

If the uncalibrated test meter had a systematic error
limit judged to be By, the calibration process im-
proved the test accuracy if By is less than B. Note
that the calibration process does not change the test
meter random error which is included in the data
acquisition random error. However, the test meter

59t
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random error contributes to the calibration random
error Si. This contribution is reduced by averaging
the calibration data. .

If the test process is long and involves several
calibrations, the calibration error contributes both
systematic error (By,) and random error (ty; Sk) to
the final test result.

If the test process is comparative, the difference
between two tests with a single calibration, the
calibration error is all systematic error and cancels
out when one result is subtracted from the other.

7 Combination and propagation errors
7.1 Summary of procedure

Root-sum-square the systematic error limits and
experimental standard deviations for each measure-
ment. Propagate the measurement systematic error
and random error limits separately all the way to the
final test result, either by sensitivity factors or by
finitely incrementing the data reduction program.
Work consistently in either absolute units or percent-
ages.



7.2 Combining sample standard deviations

The experimental standard deviation (S) of the
measurement is the root-sum-square of the elemental
experimental standard deviations from all sources,
that is;

5 k
S = ‘/ >y
=1 iml

where j defines the category: such as (1) calibration,
(2) data acquisition, (3} data reduction, (4) errors of
method and (5) subjective or personal, and i defines
the sources within the categories.

(19)

For example: the experimental standard deviation for
the calibration process in table 1 is:

’ 1
S, = Scumtion = E Sh = VSt sa+ S+ S

(20)

The measurement experimental standard deviation is
the root-sum-square of all the elemental experimental
standard deviations in the measurement system:

3
S = SMensutement = ZISJZ = VSI + SZ + SS
' j=

Categories (4) or (5) are optional and may or may not
be employed.

(21)

7.3 Combining elemental systematic error limits

If there were only a few sources of elemental system-
atic errors, it might be reasonable to add them
together to obtain the overall systematic error limits.
For example, if there were three sources, the probabil-
ity that they would all be plus (or minus) would be
one-half raised to the third power or one eighth.
However, the probability that all three will have the
_same sign and be at the systematic error limit is
extremely small. In actual practice, most measure-
ments will have ten, twenty or more sources of
systematic error. The probability that they would all
be plus (or minus) and be at their limit is close to
zero, and therefore, it is more appropriate to combine
them by root-sum-square.

If a measurement uncertainty analysis identifies four
or less sources of systematic error, there should be
some concern that some sources have been over-
looked. The analysis should be redone and expert help
should be recruited to examine the calibration hierar-
chy, the data acquisition process and the data reduc-
tion procedure for additional sources.
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Therefore, the systematic error limit will be used
herein as the root-sum-square of the elemental errors
from all sources.

[T B
i

For example: the systematic error limit for the
calibration hierarchy (table 1) is

B -
(22)

B, = Beg = JB¥1+ B+ Bi+ B,

(23)

The systematic error limit for the basic measurement
process is

B = yBY+ B +B!

(24)

If any of the elemental systematic error limits are
non-symmetrical, separate root-sum-squares are used
to obtain B* and B™. For example, assume B,, and
B,; are non-symmetrical, i.e. B3, By, B3; and By
are available. Then

B’ = B+ (B’ + B+ BL+ Bl + Bhyr (By)? 25)
B = \/,fo1+ (Bgl)z +?+ B:H— Bg + B$3+ (B;jz (26)

7.4 Propagation of measurement errors

Fluid flow parameters are rarely measured directly;
usually more basic quantities such as temperature
and pressure are measured, and the.fluid flow
parameter is calculated as a function of the measure-
ments. Error in the measurements is propagated to
the parameter through the function. The effect of the
propagation may be approximated with the Taylor’s
series methods. It is convenient to introduce the
concept of the sensitivity of a result to a measured
quantity as the error propagated to the result due to
unit error in the measurement. The “sensitivity
coefficient” (also known as “influence coefficient’) of
each subsidiary quantity is most easily obtained in
one of two ways.
a) Analytically

Where there is a known mathematical
relationship between the result, R, and
subsidiary quantities, ¥;, Y, ... Yy the

dimensional sensitivity coefficient, 8, of
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b)

the quantity Y, is obtained by partial
differentiation. Thus, if R = f (Y, Y, . .
Yx), then

iy, 27

Analogously, the relative (nondimen-
sional) sensitivity coefficient, 8/, is

o - JB/R
P = YT,

In this form, the sensitivity is expressed
as “percent/percent.” That is, 6, is the
percentage change in R brought about
by a 1% change in Y;. This is the form
to be used if the uncertainties to be
combined are expressed as percentages
of their associated variables rather than
absolute values.

(28)

Numerically

Where no mathematical relationship is
available or when differentiation is diffi-
cult, finite increments may be used to
evaluate ;. This is a convenient method
with computer calculations.

Here 6;is given by
AR
% = Ay,

(29)

The result is calculated using Y, to obtain
R, and then recalculated using (Y; + AY) to
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obtain (R + AR). The value of AY used
should be as small as practicable.

Care should be taken to ensure that the errors are
independent. With complex parameters, the same
measurement may be used more than once in the
formula. This may increase or decrease the error
depending on whether the sign of the measurement is
the same or opposite. If the Taylor’s series relates the
most elementary mesurements to the ultimate param-
eter or result, these “linked” relationships will be
properly accounted for.

This effect can be covered by calculating a modified 6
by simultaneous perturbation of all the inputs likely
to be affected, thus:

Bj;nk = (Change in output R due to simultaneous
application of linked error in all inputs, y;)

An example of this is barometric pressure which
affects all pressure inputs simultaneously, in a
“gauge-pressure” system. Another example is the use
of a common working standard to calibrate all the
pressure transducers.

Such linked errors can then be combined with
independent ones, thus:

SR) =y (o Sl + 20,5007 (30)

7.5 Airflow example
In this example, airflow is determined by the use of a

sonic nozzle and measurements of upstream stagna-
tion temperature and stagnation pressure (figure 11).



Airflow Measurement, W,

Critical Flow

Venturi \

P,
¢ T] -

Flow

Venturi
Throat, A,
Figure 11 — Flow through a sonic nozzle
The flow is calculated from F aP
a' 1t
P [( Sp + QV— S
W = CaF,¢* —— VT T
N (31) *
P(BER s ) (T, )
Plt
where \/—- \/T_n

W  isthe mass flowrate of air

F, isthe factor to account for thermal expansion of
the venturi

a isthe venturi throat area

P,, is the total (stagnation) pressure upstream

T, is the total temperature upstream

¢* is the factor to account for the properties of the
air (critical flow constant)

C isthe discharge coefficient

The experimental standard deviation for the Flow
(8,,) is calculated using the Taylor’s series expansion.

Assuming C equals 1 and has negligible error

Sw = [ (epa SFE)2 + (94,. Sw.)z +(98 Sa)2
+(6, So P+ (6, Sp 21"
(O, S5, + r, S, ] 2
where
oW
dF,

denotes the partial derivative of W with respect to F.
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' (_i_‘%“fu_ ) ]”2 (33)

By inserting the values and random errors from table
4 into equation (32), the random error of 0.17 kg/sec
for airflow is obtained.

The systematic error in the flow calculation is
propagated from the systematic error limits of the
measured variables. Using the Taylor’s series formula
gives

B, = (6, Bx1)2

+(0,, B, + (6, B,)

+(6,_ B, rl"

(34)
For this example,
= [ (eps B];vm)2 + (B(P' B(‘,m)‘2 + (Qa Ba)Z
+(8p Bp P+ (8 Br 1"
( Plt Plt) ( Tl! Tlt) ] (35)

Taking the necessary partial derivatives gives



F *aP ) 1/2
+ (—————B ) ]
_2\/rﬁt T

By inserting the values and systematic error limits of
the measured parameters from table 4 into equation
(36), a systematic error limit of 0.32 kg/sec is
obtained for a nominal airflow of 112.64 kg/sec.

(36)

Table 4 contains a summary of the measurement
uncertainty analysis for this flow measurement. It
should be noted the errors listed only apply to the
nominal values.

Table 4 — Flow data

Experimental
standard
deviation
(one
experimental
Nominal standard | Systematic
Parameter Units value deviation) error
F, — 1.00 0.0 0.001
C — 1.0 0.0 0.0
o* kg KV2 0.0404 0.0 4.04x1073
newton sec
a m? 0.191 9.55x107% [3.82x107¢
Py, Pa 254x10° 3450 345.0
Ty, K 303.0 0.17 0.17
. W kg/sec 112.64 0.17 0.32

8 Calculation of uncertainty
8.1 Summary of procedure

Select U, pp and/or Uggg and combine the systematic
and random errors of the test result to obtain the
uncertainty. The test result plus and minus the
uncertainty is the uncertainty interval that should
contain the true value with high probability.

* If information exists to justify the assumption that the systematic
error limits have a random distribution, a rigorous statistic can be
defined as shown in annex F.
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8.2 Uncertainty intervals

For simplicity of presentation, a single number (some
combination of systematic and random errors) is
needed to express a reasonable limit for error. The
single number should have a simple interpretation
(like the largest error reasonably expected) and be
useful without complex explanation. It is usually
impossible to define a single rigorous statistic because
the systematic error is an upper limit based on
judgment which has unknown characteristics.* This
function is a hybrid combination of an unknown
quantity (systematic error) and a statistic (random
error). If both numbers were statistics, a confidence
interval would be recommended. 95% or 99% confi-
dence levels would be available at the discretion of the
analyst. Although rigorous statistical confidence lev-
els are not available, two uncertainty intervals,
approximately analogous to 95% and 99% levels, are
recommended. This analogy is discussed in Annex F.

8.3 Symmetrical intervals

Uncertainty (figure 12) for the symmetrical systemat-
ic error case is centered about the measurement and
the uncertainty intervals are defined as:

R-TU, R + U, where

UADD = U99 = (B + t95 S) (37)

URSS = U95 = B2+ (tgss)g (38)
If the sample standard deviation is based on small
samples, the methods in annex C may be used to
determine a value of Student’s ty;. For large samples
(>30), 2 may be substituted for ty; in equations (37)

and (38).

If the test result is an average (R) based on sample
size N, instead of a single value (R), S/ \/—N should be
substituted for S.

The uncertainty interval selected (equations (37) or
(38)) should be provided in the presentation; the
components (systematic error, random error, degrees
of freedom) should be available in an appendix or in
supporting documentation. These three components
may be required to substantiate and explain the
uncertainty value, to provide a sound technical base



for improved measurements, and to propagate the
uncertainty from measured parameters to fluid flow
parameters and from fluid flow parameters to other

more complex performance parameters (i.e., fuel flow
to Thrust Specific Fuel Consumption (TSFC), TSFC
to aircraft range, etc).

Measurement
Largest Negative Error Largest Positive Error
= -U —— et +U -
* -B -q-t +B -

—— Measurement Scale —

|- 1955 - +tg5S
Uncertainty Interval

[=—————— (The True Value Should Be Within —— %=

This Interval)

FD 182521

Figure 12 — Measurement uncertainty interval (Uyg ); symmetrical systematic error

9 Presentation of results
9.1 Summary of requirement

The summary report should contain the nominal level
of the test result, the systematic error, the sample
standard deviation, the degrees of freedom and the
uncertainty. The equation used to calculate uncer-
tainty, U,pp or Uggg should be stated. The summary
should reference a table of the elemental errors
considered and included in the uncertainty.

9.2 Reporting error summary

The definition of the components, systematic error
limit, experimental standard deviation and the limit
(U) suggests a summary format for reporting mea-
surement error. The format will describe the compo-
nents. of error, which are necessary to estimate
further propagation of the errors, and a single value

(U) which is the largest error expected from the °
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combined errors. Additional information, degrees of
freedom for the estimate of S, is required to use the
experimental standard deviation if small samples
were used to calculate S. These summary numbers
provide the information necessary to accept or reject
the measurement error. The reporting format is:

S, the estimate of the experimental stand-
ard deviation, calculated from data.

a)

b) For small samples, v, the degrees of free-
dom associated with the estimate of the
experimental standard deviation (S). The
degrees of freedom for small samples (less
than 30) is obtained from the Welch-Sat-
terthwaite  procedure illustrated in

annex C.

B,-the upper limit of the systematic error of
the measurement process or B~ and B™ if
the systematic error limit is non-symmetri-
cal.

c)



d) The uncertainty formula should be stated.

Ugy = (B + tg5 S) or Uy, = \}B2 + (tys SV,
the uncertainty interval, within which the
error should fall. If the systematic error
limit is non-symmetrical, Ug= B —t,S
and Uj = B + to; S. No more than two
significant places should be reported. For
small samples see annex C.

The model components, S, v, B, and U, are required
to report the error of any measurement process. The
first three components, S, v, and B, are necessary to:
(1) indicate corrective action if the uncertainty is
unacceptably large before the test, (2) to propagate
the uncertainty to more complex parameters, and (3)
to substantiate the uncertainty limit.

9.3 Reporting error — table of elemental sources

To support the measurement uncertainty summary, a
table detailing the elemental error sources is needed
for several purposes. If corrective action is needed to
reduce the uncertainty or to identify data validity
problems, the elemental contributions are -required.
Further, if the uncertainty quoted in the summary
appears to be optimistically small, the list of sources
considered should be reviewed to identify missing
sources. For this reason, it is important to list all
sources considered even if negligible.

Note that all errors in table 5 have been propagated
from the basic measurement to the end result before
listing and, therefore, they are expressed in units of
the test result.

Table 5 — Elemental error sources

Experimental

Measurement
i nominal
subscript  Source value

standard
deviation

Sy

Systematic Source of
error systematic
{imit By error

Degrees of

freedom Vi

11
21
31

Calibration

12
22
32
42

Data
Acquisition

13
23
33

Data
Reduction

Nominal
Value

Results

S= stij -

v w/s B= VIB?

tose

Up = B+t (S) =
VB + (t58)° = —

U95 =

24



9.4 Pre-test analysis and corrective action

Uncertainty is a function of the measurement pro-
cess. It provides an estimate of the largest error that
may reasonably be expected for that measurement
process. Errors larger than the uncertainty should
rarely occur. If the difference to be detected in an
experiment is of the same size or smaller than the
projected uncertainty, corrective action should be
taken to reduce the uncertainty. Therefore, it is
recommended that an uncertainty analysis always be
done before the test or experiment. The recommend-
ed corrective action depends on whether the system-
atic or the random error is too large as shown in
table 6.

Table 6 — Recommended corrective action if
the predicted pretest measurement accuracy
1s unacceptable

Systematic Error Limit Too Large: Random Error Too Large:

» Improve calibration ¢ Larger test sample

= Independent calibrations for * More precise instrumentation
redundant meters
: * Redundant instrumentation
« Concommitant variable
s Data smoothing

s In place calibration

— Moving average

— Filter

— Regression

* Improve design of
experiment
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9.5 Post-test analysis and data validity

Post-test analysis is required to confirm the pretest
estimates or to identify data validity problems. Com-
parison of measurement test results with the pretest
analysis is an excellent data validity check. The
random error of the repeated points or redundant
instruments should not be significantly larger than
the pretest measurement estimates. When redundant
instrumentation or calculation methods are available,
the individual uncertainty intervals should be com-
pared for consistency with each other and with the
pretest measurement uncertainty analysis.

Three cases are illustrated in figure 13.

When there is no overlap between uncertainty inter-
vals, as in Case I, a problem exists. The true value
cannot be contained within both intervals. That is,
there should be a very low probability that the true
value lies outside any of the uncertainty intervals.
Either the uncertainty analysis is wrong or a data
validity problem exists. Investigation to identify bad
readings, overlooked systematic error, etc., is neces-
sary to resolve this discrepancy. Redundant and
dissimilar instrumentation should be compared. Par-
tial overlap of the uncertainty intervals, as in Case II,
also signals that a problem may exist. The magnitude
of the problem depends on the amount of overlap.
The only situation when one can be confident that
the data is valid and the uncertainty analysis is
correct is Case III, when the uncertainty intervals
completely overlap.



Case I Case II . Case III

No Qverlap Partial Overlap Complete Overlap
0 U U1
V2
Q7 Lo 3 (ol
X X X -
1 1 1 %
Uz
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Figure 13 — Three post-test measurement uncertainty interval comparisons
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Annex A: Examples on estimation of uncertainty in
airflow measurement

Introduction

This annex contains three examples of fluid flow
measurement uncertainty analysis. The first deals
with airflow measurement for an entire facility (with
several test stands) over a long period. It also applies
to a single test with a single set of instruments. The
second example demonstrates how comparative de-
velopment tests can reduce the uncertainty of the
first example. The third example illustrates a liquid
flow measurement.

A.1 General

Airflow measurements in gas turbine engine systems
are generally made with one of three types of
flowmeters: venturis, nozzles and orifices. Selection of
the specific type of flowmeter to use for a given
application is contingent upon a tradeoff between
measurement accuracy requirements, allowable pres-
sure drop and fabrication complexity and cost.

Flowmeters may be further classified into two catego-
ries: subsonic flow and critical flow. With a critical
flowmeter, in which sonic velocity is maintained at
the flowmeter throat, mass flowrate is a function only
of the upstream gas properties. With a subsonic
flowmeter, where the throat Mach number is less
than sonic, mass flowrate is a function of both
upstream and downstream gas properties.

Equations for the ideal mass flowrate through noz-
zles, venturies and orifices are derived from the
continuity equation:

W = paV
pa (39)

In using the continuity equation as a basis for ideal
flow equation derivations, it is normal practice to
assume conservation of mass and energy and one-
dimensional isentropic flow. Expressions for ideal
flow will not yield actual flow since actual conditions
always deviate from ideal. An empirically determined
correction factor, the discharge coefficient {(C) is used
to adjust ideal to actual flow:

C = Wona/ Wigea

(40)
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A.2 Example one — test facility
A.2.1 Definition of the measurement process

What is the airflow measurement capability of a given
industrial or government test facility? This question
might relate to a guarantee in a product specification
or a research contract. Note that this question implies
that many test stands, sets of instrumentation and
calibrations over a long periocd of time should be
considered. )

The same general uncertainty model is applied in the
second example to a single stand process, the compar-

. ative test.

These examples will provide, step by step, the entire
process of calculating the uncertainty of the airflow
parameter. The first step is to understand the defined
measurement process and then identify the source of
every possible error. For each measurement, calibra-
tion errors will be discussed first, then data acquisi-
tion errors, data reduction errors, and finally, propa-
gation of these errors to the calculated parameter.

Figure 14 depicts a critical venturi flowmeter installed
in the inlet ducting upstream of a turbine engine
under test for this example.

When a venturi flowmeter is operated at critical
pressure ratios, ie., (Py/P,) is a minimum, the
flowrate through the venturi is a function of the
upstream conditions only and may be calculated from

. P

nd?
a4 CFa(p —’]T.

W=

(41)
A.2.2 Measurement error sources

Each of the variables in equation 41 must be carefully
considered to determine how and to what extent
errors in the determination of the variable affect the
calculated parameter. A relatively large error in some
will affect the final answer very little, whereas small
errors in others have a large effect. Particular care
should be taken to identify measurements that influ-
ence the fluid flow parameters in more than one way.

In equation (41), upstream pressure and temperature
(P, and T)) are of primary concern. Error sources for
each of these measurements are: (1) calibration, (2)
data acquisition and (3) data reduction.



A.2.2.1 Figure 15 illustrates a typical calibration
hierarchy. Associated with each comparison in the
calibration hierarchy is a possible pair of elemental
errors, a systematic error limit and an experimental
standard deviation. Table 7 lists all of the elemental
errors. Note that these elemental errors are not

cumulative, e.g., B,; is not a function of B,;. The
systematic error limits should be based on interlabo-
ratory tests if available, otherwise, the judgment of
the best experts must be used. The experimental
standard deviations are calculated from calibration
history data banks.

Measurement
Station 1 2
I I
1
Flow \_’/
]

Engine

s /
/ \—Labyrinth
Sonic Nozzle Throat Seal .
Bellmouth
Plenum

Figure 14 — Schematic of sonic nozzle flowmeter installation upstream of a turbine engine

Standards Laboratory
!ntertaboratory Standard
Transfer Standard
Working Standard

Measurement Instrument

Figure 15 — Typical calibration hierarchy
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Table 7 — Calibration hierarchy error sources

Experimental Degrees

Systematic standard of
Calibration error, P, deviation, P, freedom
SL - ILS B,, = 68.953 S, = 13.787 v =10
ILS-TS B,, = 68.953 S,y = 13.787 vy = 15
TS - WS |Bj, = 68.953 Sy, = 13.787 vy = 20
WS- MI |B,, = 124. S, = 36541 Vay = 30

The experimental standard deviation for the calibra-
tion process is the root-sum-square of the elemental
sample standard deviations, i.e.,

S,

Tl L &L
\/Su“" Syt Sy+ Sy

4365 P,

y13.787" + 13.787" + 13.78T" + 36.541

(42)

Degreés of freedom associated with S are calculated
from the Welch-Satterthwaite formula as follows:

(8%+ Si,+ S5+ 8H) ®

v, =

( 11 +
Vi

(13.787% + 13.787% + 13,787% + 36.541%)°

Vai

4 4 4
S5, . Sy + S4 )
Vi

Va

= 54.
(13.787‘ N 13.787° 13.787° 36.541‘)
10t 15 T2 YT a0
(43)

The systematic error for the calibration process is the
root-sum-square of the elemental systematic error

limits, lLe.,

B,

[

me LN, R, nl
\/B;ﬁ' B+ B3+ B,

(44)

02607

1722 P,

/68.953" + 68.953° + 68.9537 + 124.117

]

(45)
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Data acquisition error sources for pressure measure-
ment are listed in table 8.

Table 8 — Pressure transducer data acquisition
error sources

Experimental Degrees
. Systematic standard of
Error source error, P, Deviation, P, freedom
Excitation By, = 68.953 |S;p= 34481 vy, = 40
Voltage
Electrical By = 68953 Sy, = 34481 vy = 90
Simulation
Signal By, = 68.953  |Ssy = 34481  |vgp = 200
Conditioning
Recording B,; = 68.953 Sy = 34481 Vg = 10
Device
Pressure B;, = 68.953 S;p = 48270 v5p = 100
Transducer
Environmental |Bg, = 68.953 Sga = 68.953 vgg = 10
Effects
Probe Errors B, = 117.223 | Sy, = 48.270 Vo9 = 60
The experimental standard deviation for the data
acquisition process is
S, = S5+ Si+ St Si+ St Sot S5
S, = [34.481% + 34.481% + 34.481% + 34.481" + 48.270°
+68.953% + 48.270% ]
= 119.039 P,
(46)
(Si+ S+ Sipt Siy+ S&+ S5+ 8%)°
v, =
Vi2 Va2 Vaa * Ve Vs2 Vg2 V7

va = (34.481% + 34.481% + 34.481% + 34.4812 + 48.270% + 68.953% + 48.270%)°

(34.4&;14 34481 34481%
—40 90 T 00
68.953*  48.270% )
—16 *~e /=7

34.481*

48.270%

10 " 100

(47)




The systematic error limit for the data acquisition
process is x

1/2

B, = [ 68.953" + 68.953" + 68.953? + 68.953? |

+68.953° + 68.953% + 117.223°

205.6 P,
(48)

A computer operates on raw pressure measurement
data to perform the conversion to engineering units.
Errors in this process are called data reduction errors
and stem from curve fits and computer resolution.

Computer resolution is the source of a small elemen-
tal error. Some of the smallest computers used in
experimental test applications have six digits resolu-
tion. The resolution error is then plus or minus one in
10%. Even though this error is probably negligible,
consideration should be given to rounding off and
truncating errors. Rounding-off results in a random
error. Truncating always results in a systematic error
~ (assumed in this example.)

Table 9 lists data reduction error sources.

Table 9 — Pressure measurement data reduction
error sources

Experimental Degrees
Systematic standard of
Error source error, P, deviation, P, freedom
Curve Fit B,; = 68.953 8i;3=10 Vis
Computer By; = 6.894 Sy = 0 Vag
Resolution

The experimental standard deviation for the data
reduction process is

S, = ySi+ Sy

0.0

I

(49)

The systematic error limit for the data reduction
process is

B, = |Bj;+ By

B,

/68.953% + 6.894°

69.297 P,
(50)

The experimental sample standard deviation for
pressure measurement then is

S

2 2 2 2 2 2 2
b [ Sii+ Sait+ Sy+ Sy+ S+ Sgpt Spp

+ 83+ 82+ 82+ 8%+ S+ 82"
42 52 62 72 13 23] (51)

or

S, = JSE+ 82+ 82

J43.651 9 +119.039° + 0.07

126.790 P,
- (52)

Degrees of freedom associated with the experimental
standard deviation are determined as follows:

P. 92
v, = (Sh+ S+ S+ Sh+ Sh+ Sh+ Sh+ Sh+ SL+ 8

+ 8%+ Si+ 83)°

4 4 4 4 4 4 4 4
/( Sh Sh Sy Sy Si Sh Sh S
Vi Va Va1 Va Vi2 Va2 Vzz Vi

4 4 4 4 4
. S5 Se . S» 8 + 83 )
Vsa Vez Vg Viz Vo

(53)



or and random errors. Table 10 lists temperature calib-

ration hierarchy elemental errors.
(8 + 82 + S Y

Vp = S4 S4 S4 . . N
( D223 ) Table 10 — Temperature calibration hierarchy ele-
v Va Vy mental errors
Experimental Degrees
b - _ (43.6519°+119.039" + 0.0°F Systematic | standard of
P ( 3651 9° 119.039° 0.0* ) Calibration error, K deviation, K freedom
+ +
54 77 0 SL-ILS |B,, = 0.056 81, = 0.002 vy = 2
ILS-TS B,, = 0.278 S,; = 0.028 Vo = 10
= 96 therefore ty; = 2. (54) TS - WS |B,, = 0333 S;, = 0.028 Vgy = 15
WS - MI B, = 0.378 84 = 0.039 v = 30
The systematic error limit for the pressure measure-
ment is
The calibration hierarchy experimental standard de-
viation is calculated as
B, = [ Bi,+ Bl+ Bj+ B}+ Bi,+ B+ B3,

7 7 a3
S, = \/SIZ+ Ss+ S5+ S5

2 2 2 2 2 2 /2
+ Bl+ Biy+ B+ Bi+ B+ B

(55)
= |J0.002% + 0.028 + 0.028 + 0.039
or
. s = 0.056 K.
B, = yBi+B;+B; _ (58)
B, - |T72.246° 7 205,505 + 69.097 Degrees of freedom associated with S, are
(8h+ 85+ Sii+ 83)°
V; =
R
= 277.018 P, (56) Vi Vo Va Va
2 2 2 212
Uncertainty for the pressure measurement is - (0.0?2 + 0.02% +0.028 4; 0.039°)° .
( 0.002° = 0028 = 0028 _ 0.039 )
2 10 15 30
Ug = (B, +t55 S,), Ugs = yBZ+ (tys S,f
= 53 > 30, therefore ty; = 2. 59
Uy = (277.018 + 2 x 126.790) (59)
The calibration hierarchy systematic error limit is
= 530598 P,, Uy, = 375.6 P, -
B, = {By+ Bs+ B+ By,

(60)
A.2.2.2 The calibration hierarchy for temperature

measurements is similar to that for pressure measure- J0.0567 + 0.278% + 0.333 + 0.378"

ments. Figure 16 depicts a typical temperature mea- (61)
surement hierarchy. As in the pressure calibration
hierarchy, each comparison in the temperature calib-
ration hierarchy may produce elemental systematic

0.578 °K.
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A reference temperature monitoring system will
provide an excellent source of data for evaluating
both data acquisition and reduction temperature
random errors.

Figure 17 depicts a typical setup for measuring
temperature with Chromel-Alumel thermocouples.

Standards Laboratory SL
Calibration
Interlaboratory Standard ILS
\ Calibration
Transfer Standard TS
Calibration
Working Standard WS
Calibration
Measurement Instrument Mt
' Figure 16 — Temperature measurement calibration hierarchy

c cc 77
r r i} Cu T ———
S CR BE T
Al Al C
i—c_; - ol -
Cr l ¢
iL *—t— - S
S
Al e
Lﬁk 4 - —ola-
S TR 1
r L
I | \_
I ojce | Uniform Temperature
T0 % Point : Reference
Bath
L

Figure 17 — Typical thermocouple channel

If several calibrated thermocouples are utilized to
monitor the temperature of an ice point bath, statisti-
cally useful data can be recorded each time measure-
ment- data are recorded. Assuming that those

RN
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thermocouple data are recorded and reduced to
engineering units by processes identical to those
employed for test temperature measurements, a
stockpile of data will be gathered, from which data
acquisition and reduction errors may be estimated.



For the purpose of illustration, suppose N calibrated
Chromel-Alumel thermocouples are employed to
monitor the ice bath temperature of a temperature
measuring system similar to that depicted by figure
17. If each time measurement data are recorded,
multiple scan recordings are made for each of the
thermocouples, and if a multiple scan average (Xy) is
- calculated for each thermocouple, then the average
(X,) for all recordings of the jth thermocouple is

M

[]
-

i (62)

where K. is the number of multiple scan recordings
for the jti’n thermocouple.

The grand average (X) is computed for all monitor
thermocouples as

(63)

The experimental standard deviation (Sz) for the
data acquisition and reduction processes is then

N Kj
) Zl‘ (Xij - Xj)e
S j=1 i=1
x = N
!
= 0.094 K (assumed for this example)
The degrees of freedom associated with S; are
5
Vi = -1
o & (65)

200 (assumed for this example)

Data acquisition and reduction systematic error lim-
its may be evaluated from the same ice bath tempera-

026(tr
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ture data if the temperature of the ice bath is
continuously measured with a working standard such
as a calibrated mercury-in-glass thermometer. There
the systematic error limit is the largest observed
difference between X and the temperature indicated
by the working standard acquisition and reduction
process. In this example, it is assumed to be 0.56°K,
ie.,

B; =056°K (66)

Error sources accounted for by this method are:

1) Ice point bath reference random error

2) Reference block temperature random error

3) Recording system resolution error

4) Recording system electrical noise error

5) Analog-to-digital conversion error

6) Chromel-Alumel thermocouple millivolt
output vs. temperature curve-fit error

7) Computer resolution error

Several errors which are not included in the monitor-
ing system statistics are:

1)  Conduction error (Bc)
2)  Radiation error (Bg)
3)  Recovery error (By)
4) Calibration error (B,)

These errors are a function of probe design and
environmental conditions. Detailed treatment of
these error sources is beyond the scope of this work.

The experimental standard deviation for temperature
measurements in this example is

'S, =\/sf+s§

where

(67)

S, = calibration hierarchy experimental stand-
ard deviation



data acquisition and reduction experi-
mental standard deviation

0.056% + 0.0947

|42]
-
i

0.11 °K

The degrees of freedom associated with S_are
(8% + 8%°
(5, )

Vi Vo

V., =

(68)
(0.0562 + 0.0942)
53t 7200

250 therefore to; = 2

Systematic error limits for the measurements are

B

T

= {Bi +Bi+ B+ Bi+ B} (69)

where

= calibration hierarchy systematic error
limits

: = data acquisition and reduction system-
atic error limits

= conduction error systematic error limits
(negligible in this example)

= radiation error systematic error limits
(negligible in this example)

= recovery factor systematic error limits
(negligible in this example)

o
I

J0.5787 + 0.56°

0.804°K
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Uncertainty for the temperature measurement is

Ur = (Br + t95 Sr)

Ugg = (Bc + t95 Sv)’ U95 = VBt + (t95 Sr)
Uy = (0.804 + 2 x 0.11), Uy, = 0.804% + (2 x 0.11)°

= 1.02°K, = 0.83°K

(70)

When v is less than 30, ty; is determined from a
Student’s t table at the value of v. Since v, is greater
than 30 here, use tg; = 2.

A.2.2.3 There are catalogs of discharge coefficients
for a variety of venturis, nozzles and orifices. Cata-
loged values are the result of a large number of actual
calibrations over a period of many years. Detailed
engineering comparisons must be exercised to ensure
that the flowmeter conforms to one of the groups
tested before using the tabulated values for discharge
coefficients and error tolerances.

To minimize the uncertainty in the discharge coeffi-
cient, it should be calibrated using primary standards
in a recognized laboratory. Such a calibration will
determine a value of A, = Ca and the associated
systematic error limit and experimental standard
deviation.

When an independent flowmeter is used to determine
flowrates during a calibration for C,- dimensional
errors are effectively calibrated out. However, when C
is calculated or taken from a standard reference,
errors in the measurement of pipe and throat diame-
ters will be reflected as systematic errors in the flow
measurement.

Dimensional errors in large venturis, nozzles and
orifices may be negligible. For example, an error of
0.001 inch in the throat diameter of a 5 inch critical
flow nozzle will result in a 0.04% systematic error in
airflow. However, these errors can be significant at
large diameter ratios.

A.2.2.4 Non-ideal gas behavior and changes in gas
composition are accounted for by selection of the
proper values for compressibility factor (Z), molecular
weight (M) and ratio of specific heats (y) for the
specific gas flow being measured.



When values of v and Z are evaluated at the proper
pressure and temperature conditions, airflow errors
resulting from errors in y and Z will be negligible.

For the specific case of airflow measurement, the
main factor contributing to variation of composition
is the moisture content of the air. Though small, the
effect of a change in air density due to water vapor on
airflow measurement should be evaluated in every
measurement process.

A.2.2.5 The thermal expansion correction factor
(F,) corrects for changes in throat area caused by
changes in flowmeter temperature.

For steels, a 17°K flowmeter temperature difference,
between the time of a test and the time of calibration,
will introduce an airflow error of 0.06% if no correc-
tion is made. If flowmeter skin temperature is
determined to within 3°K and the correction factor
applied, the resulting error in airflow will be negligi-
ble.

A.2.3 Propagation of error to airflow
For an example of propagation of errors in airflow

measurement using a critical-flow venturi, consider a
venturi having a throat diameter of 0.554 meters

operating with dry air at an upstream total pressure
of 88 126P, and an upstream total temperature of
265.9°K.

Equation (71) is the flow equation to be analyzed:

W=RSZCFa(p'\/I:IITl
11
-V (FH)T R

Assume, for this example, that the theoretical dis-
charge coefficient (C) has been determined to be
0.995. Further assume that the thermal expansion
correction factor (F,) and the compressibility factor
(Z) are equal to 1.0. Table 11 lists nominal values,
systematic error limits, sample standard deviations
and degrees of freedom for each error source in the
above equation. (To illustrate the uncertainty meth-
odology, we will assume a sample standard deviation
of 0.000 5 in addition to a systematic error of 0.003.)

Note that, in table 11, airflow errors resulting from
errors in F,, Z, k, gg M and R are considered
negligible.

Table 11 — Airflow measurement error sources
Systematic | Experimental | Degrees
Error Nomineal error standard of Uncertainty
source Units value limit deviation | freedom, Uy
’ v
P, P, 88 126 277.02 126.79 96 530.60
T, K 265.9 0.8 0.11 250 1.02
d m 0.554 254x107°  12.54X107% | 100 762x107°
C 0.995 0.003 0.000 5 — 0.003
F, 1.0 — - —_ —
Z 1.0 - - — —
Y | 1.401 — — — —
g — - - - -
M kg/kg-mole 28.95 — — — —
J/K-kg-mole |[8,314 — — — —

0260r
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From equation (71), airflow is calculated as

_ 3142 2
W = =77 (0.554)* x 0.995 x 1.0
2.401
. ( 2 ) 0.401 ( 1.401 x 28.95 ) 88 126
2.401 8314 X 5659
= 52.39 kg/sec.

Taylor’s series expansion of equation (71) with the
assumptions indicated yields equations (72) and (73)
from which the flow measurement experimental
standard deviation and systematic error limits are

calculated.
SN ESESNESNES,
S, = 52.30 [ ( 126.790 )2 .\ ( = )2
1/2
(og05n )+ (2xpgpeom )]

= 5239 J(0.00I 4) + (-0.000 2)° + (0.000 503)2 + (0.000 09)?

= 6.078 7 kg/sec' (72)
B~ waf (B ) (B ) () ()
5. - seas () + (B33 ) (395 )

+( 0.000 05 )° ]vz
T 0554

= 52.39 v(0.003 1)? + (~0.001 5)% + (0.003 0)% + (0.000 09)*

= 0.241 6 kg/seg (73)
1

By using the Welch-Satterthwaite formula, the de-
grees of freedom for the combined experimental
standard deviation is determined from

2 a 2 2 2.2
[C3se) +(Fsn) +( Sfse) +( &se) ]

Vw = 1 T
(Ssn) * (Fsn) - (Bs) » (Hs)

\pl YT, V4 V¢
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e
() () (5 ()
-—\";1— v, V_d Ve

(74)

which results in an overall degrees of freedom > 30,
and, therefore, a value of tq; of 2.0.

Total airflow uncertainty is then,

Ug = (B, +tes S,), Ups = VB3 + (tes S,)
Uy, = [0.241 6+ 2 x 0.078 7]

= 0.40 kg/sec

= 0.8%
Uy = 0.29 kg/sec

= 0.55%

(75)
A.3 Example two — comparative test
A.3.1 Definition of the measurement process

The objective of a comparative test is to determine
with the smallest measurement uncertainty the net
effect of a design change, such as a new part. The first
test is performed with the standard or baseline
configuration. A second test, identical to the first
except that the design change is substituted in the
baseline configuration, is then carried out. The
difference between the measurement results of the
two tests is an indication of the effect of the design
change.

As long as we only consider the difference or net
effect between the two tests, all the fixed, constant,
systematic errors will cancel out. The measurement
uncertainty is composed of random errors only.

For example, assume we are testing the effect on the
gasflow of a centrifugal compressor from a change to
the inlet inducer. At constant inlet and discharge



conditions, and constant rotational speed, will the gas
flow increase? If we test the compressor with the old
and new inducers and take the difference in measured
airflow as our defined measurement process, we
obtain the smallest uncertainty. All the systematic
errors cancel. Note that, although the comparative
test provides an accurate net effect, the absolute value
(gasflow with the new inducer) is not determined of if
calculated, as in example one, it will be inflated by the
systematic errors. Also, the small uncertainty of the
comparative test can be significantly reduced by
repeating it several times.

A.3.2 Measurement error sources

All errors result from random errors in data acquisi-
tion and data reduction. Systematic errors are effec-
tively zero. Random error values are identical to those
in example one, except that calibration random errors
become systematic errors and, hence, effectively zero.

A.3.2.1 Comparative tests shall use the same test
facility and instrumentation for each test. All calibra-
tion errors are systematic and cancel out in taking the
difference between the test results.

B, =0
and
Sl = O, SC = 0
A3.22
S, =S,
= 119.039 Pa _
(see equation (47))
V=W = 77 ]
(see equation (48))
S, = 8;
= 0.094°K

(see equation (64))
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200 ,
(see equation (65))

A.3.2.3 The test result is the difference in flow
between two tests.

A, = W, -W,

SAW = szl+ (—15 Sw2= Sw\/’z_

Uswyy = (Baw + 28,,) Uy = (Baw)” + (2Saa)
= (0 + 2S,,) = 0° + (2S4,)
= 2SAW = 2SAW

UAws._, = 2Sw \/§ UAw95 = 2Sw \/é

119.037 ) -0.094 ¥
S = 152'39[( 33196 )+(2-x-265-9)
( 0.000 5 ( 0.000 05 ]”2 :
*\70995 / T\ 0552
S. = 0.076 2 kg/sec S,w = 0.107 8 kg/sec
Upwgy= 0.215 5 kg/sec Uypy, = 0.215 5 kg/sec

= 0.41% = 0.41%

(see equation (75))

A.3.2.4 Note that the differences shown in table 12
are entirely due to differences in the measurement
process definitions, The same fluid flow measurement
system might be used in both examples. The compar-
ative test has the smallest measurement uncertainty,
but this uncertainty value does not apply to the
measurement of absolute level of fluid flow, only to
the difference.
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Explanation
1,2,3,....m Observation points
b;, by, by, .. b, Breadth (metres) of segment associated with the observation point
dy, do,ds, .. d, Depth of water (metres) at the observation point
Dashed lines Boundary of segments: one heavily outlined
If x and y are respectively horizontal and vertical coordinates of all the points in the cross-
section, and A is its total area, then the precise mathematical expression for q,, the true

volumetric flowrate (discharge) across the area, can be written as

Figure 18 — Definition sketch of velocity-area method of discharge measurement (midsection method)
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Table 12 — Error comparisons of examples one

and two
Example Example
One — Two —
Facility Facility
1. Experimental standard 0.078 7 0.076 2
deviation, kg, /sec (s)
2. Degrees of freedom (v) >30 >30
3. Systematic error, 0.245 7 0
kgm/sec (B)
4. Uncertainty, kg_/sec 0.40 0.22

Annex B — Examples on estimating uncertainty in
open channel flow measurement

B.1 General

Evaluation of the overall uncertainty of a flow in an
open channel will be demonstrated by considering (1)
the velocity-area method and (2) the weirs method.

The method of measuring the flow is such that it is
impractical to eliminate interdependent variables
from the equation before estimating flow uncertainty.
Therefore, it involves evaluation of the interdepen-
dent uncertainties specified in 7.4. In addition, mea-
surement conditions often make it impossible to
obtain the replicate measurements needed for
evaluation of experimental standard deviations.
Thus, it is desirable to express the random errors as
well as the systematic errors as error limits. Under
these conditions, it also is appropriate to assume that
all the random error limits are equivalent to two
experimental standard deviations. Under this as-
sumption, the random error limits can be propagated
with each other by means of the same root-sum-
square formulas as the systematic error limits (see
equations 19-22).

B.2 Example one — velocity area method

B.2.1 The equation for discharge in an open
channel — velocity area

The channel cross-section under consideration is
divided into segments by m verticals. The breadth,
depth and mean velocity associated with any vertical i
are denoted by b, d; and ¥; respectively. (see figure
18) The product Q; = b,d;v; represents an approxima-
tion to the discharge (volumetric flow rate) in the i-th
segment. The sum over all segments,
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= i P = ﬁ bi 'Vi
o =1 Q i=1 d (76)
represents an estimated or observed value of the total
discharge.

If x and y are respectively horizontal and vertical
coordinates of all the points in the cross-section, and
A is its total area, then the precise mathematical
expression for Q,, the true volumetric flowrate (dis-
charge) across the area, can be written as

Qv = I]A V(X:Y) dx dy (77)

The true discharge and the observed discharge are
related by a proportionality factor representing the
approximation of the integral equation (77) by the
finite sum equation (76), thus:

Q - FaQ, - F.Ebd7, -
where
R = [[laovssdeay]/[ £ bas]

In practice, F, can be evaluated from analysis of
measurements in which m is sufficiently large for the
effects on Q,, of omitting verticals, in stages, to be
determined. F is subject to a random uncertainty.

It may be convenient in practice to take an F
variation with m that is a mean value of values for
sections of several different rivers, taken together.
Then the actual variations of F  from river to river,
as compared with the meaned variation, will involve
both systematic and random errors.

F,, is dependent on the number of verticals m, and
tends to unity as m increases without limit. Thus,
equation 78 can be written approximately as

Mz

Q, = (bidivi)

1

i
—
J

79)
with increasing accuracy as m increases.

This last form is the one that is given in ISO 748.



B.2.2 The overall the flow

determination

uncertainty  of

It 1s plausible to assume that, at a given m, F and Q
can be treated as independent variables.

Vo

However, the Q; in principle are not independent of
one another, since the value corresponding to any one
vertical will be related to the values of adjacent
verticals. Furthermore, there is an interdependence
between the d; and v; corresponding to any particu-
lar vertical. Thus, applying the principles for combin-
ing random errors (see clause 5) and denoting random
error by S, the following expression for SQ, the
uncertainty of Q, can be derived from equation 78.

(e -[%]
() R[] E

Q2
a7,

2 m
2 L8 g8 (L )se]

Qso 3 i=1 j=i+l J i=1 e i (80)
- where S; ; arise from the interdependence between Q;
and Q and S from the interdependence between d,
and ¥,

It is convenient to introduce the notation S’ for
relative random error.

Thus Sb/b is written S, SF /F, is written SF ,

and, neglecting Su’ and Sld‘ s equatwn (80) becomes
sto92:8 R (grigign
§q = Srr 2 q - (84+ 84+ 87

If the relative errors Sy are all nearly enough equal, of
value S’bi, and similarly for the Sd‘ and S’y , then
S2+(S7+8%+8%) > (Q 2

F ( b d } E (Ql/QVD) (81)

If the verticals are so located that Q; ~ Q, /m, then

L

2 /2
o~ ST+ 4 (

,2 + S/2 + Slé
b d ) (82)

In multi-point velocity-area methods, velocity is
measured at several points on a vertical, and the
mean value is obtained by graphical integration or as
a weighted average. The latter treatment can he
expressed mathematically for a particular value as
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V=2 wv,
p=1

where the w_ are constant weighting factors. The
suffix i that identifies the particular vertical is
omitted to simplify the symbolism. The points usually
are chosen so that £ w_ = 1. This equation can also
represent the single-point method, by taking k =

In all cases, the estimates v so computed are subject
to errors. These errors are due to improper placement
of the meter at depth and to deviations of the actual
velocity profile from the presumed profile. The effect
of these errors can be expressed by means of a
multiplicative coefficient P analogous to the coeffi-
cient F_ used for similar purposes in equation (78).
The same analysis that led to equation (80) then
yields the following expression for relative random
error of the average velocity v:

Z (W, vf
= W, Vpl

in which S’ denotes relative random error in the
subscript variable, v is measured point velocity, and
the ratio of wv-sums expresses the variability of
weighted velocity over the depth of the vertical. For a
uniform k-point velocity profile, this ratio would
equal 1/k. For an extremely non-uniform profile, in
which a single term dominated all the others, the
ratio would equal 1. The latter value is adopted, at
least for small k values, for the sake of conservatism,
with the result

2 _ 2 2
S5 =87+87

72 2 72
8% = 82+ 8%

This choice also helps to represent the effect of any
unaccounted-for correlations among point-velocity
errors in the same vertical.

In practice, the random error in the velocity measure-
ment at a point is assumed to be due to a meter-
calibration random relative error, S',, together with a
stream pulsation random error S',. Then the random
relative error for point velocities is

2 _ ’2 2
§? = 8§72+ 8%

The corresponding random relative error for average
velocity in the vertical is



S'% - ,2 S/2 2
S, +S5C+8, (83)

B.2.3 Calculation of uncertainty

It is required to calculate the uncertainty in a
current-meter gauging from the following particulars:

Number of verticals used 20
Exposure time of current

meter at each point in

the vertical 3 min
Number of points taken in

the vertical (single )

point, two points, etc.) 2
Type of current meter rating

(individual or group) individual
Average velocity in measuring

section above 0.3 m/s

Details of procedure are described in ISO 748.

" The random and systematie errors are combined by
the root-sum-square method as stated in 8.3, i.e., if

‘g and B’Q are the percentage overall random and
systematic relative errors respectively, then Uy, the
percentage uncertainty in the current meter gauging,
is

UIQgs = V@m% and U’Qgg = B,Q + ZSIQ

B.2.3.1 The error equation used for evaluating the
overall random error is (see equation (82).)

Sq = \[S’fn%-—rlﬁ— (S5 +8%+8%)

where
S’Q is the overall percentage random error
S, is the percentage random error due to the
limited number of verticals used;
S%, is the percentage random error in measuring
width of segments; ’
S’y is the percentage random error in measuring

depth of segments;
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S’ is the percentage random error in estimating

the average velocity in each vertical

s; =

(see equation (85))
where

SI

o is the percentage error due to limited number

of points taken in the vertical (in the present
example the two-point method was used, i.e.,
at 0.2 and 0.8 from the surface respectively);

is the percentage error of the current meter
rating (in the present example an individual
rating was used at velocities of the order of
0.30 m/s);

is the percentage error due to pulsations
(error due to the random fluctuation of
velocity with time; the time of exposure in the
present example was three one-minute read-
ings of velocity.)

The percentage values of the above partial errors at
the 95% confidence level are tabulated in B.2.3.2.

The equation for calculating the overall systematic
error is

By = ,/B’E + B’E + B?
where

B’Q is the overall percentage systematic uncer-

tainty in discharge;

B}, is the percentage systematic error in the
instrument measuring width;

B’, is the percentage systematic error in the
instrument measuring depth; and

By is the percentage systematic error in the

current meter rating tank.

The systematic errors in the current meter gauging
are confined to the instruments measuring width,
depth and velocity and should be restricted to 1% as
shown in B.2.3.2.



B.2.3.2 The values of the error elements affecting
_uncertainty in discharge are tabluated below as
percentage errors at the 95% confidence level. The
numerical values are taken from ISO 748. It is
recommended, however, that each user determine
independently the values of the errors for any partic-
ular measurement.

Table 13 — Error elements affecting uncertainty in

discharge
(28" (B}
random percentage
error systematic
limit error
Error source Units (2S:95%) limit
F,,, number of verticals — 5.0 -
b, segment width m 0.5 1.0
d, segment depth m 05 1.0
Vo number of profile m/s 7.0 —_
points
v, meter calibration m/s 2.0 1.0
v,, meter exposure time m/s 10.0 —

Then, the overall random error in discharge is given
by

287, = 2 \l ST+ 'r.%x— (Sh+85+82+8%+87)

= ‘,25+

5.7%

L

50 (0.25 + 0.25 + 49 + 4 + 100)

The overall systematic error is

JE+ 15+ 12

By

1.7%

The combination of both random and systematic
errors then gives the overall percentage uncertainty
in discharge, U’y
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U,Q95 = (2S’Q) + BlQ U,Qgg = B’Q + QSIQ
- BT+ 1T = 17+5.7
= 59% = T7.4%

B.2.3.3 The discharge measurement may be ex-
pressed in the following form:

Discharge Q) m®/s
(Combined) uncertainty, U’Q95 5.9%
{Combined) uncertainty, U'Q99 7.4%
Random error (2S'Q) 5.7%
Systematic error (B’Q) 1.7%

Uncertainties calculated in accordance with ISO
5168.

B.3 Example two — weir measurement
B.3.1 Weir data
It is required to calculate the discharge and the

uncertainty in discharge for a triangular profile weir
given the following details: (see figure 19)

Gauged head, h 0.67m
Breadth of weir, b 10m
Crest height, P 1m
Coefficient of discharge, Cd 1.163
Coefficient of velocity, Cv 1.054

The discharge equation is

- 2/33/2CC "-bh3/2
Q (/ ) d v\/g (84)

Details of the procedure are described in ISO 4360.
B.3.2 Uncertainty equations
Taylor series analysis of the discharge equation yields

the following uncertainty equations, which can be
used for both random and systematic errors:

S’Q = \/S'E et S’i + (3 /"2)2 S’lzl



and

in which §" and B’ denote percentage errors of the

subscript variables.
B/ = B/Zc +B/2 + 3 2" B/2
Q J d v b ( / )27 h (85)
i Head gauging section
]
P
: !
I
:,% ”

Sigpe 3 : § ~——

Figure 19 — Triangular profile weir

B.3.3 Evaluation of discharge and uncertainties

The values of the error elements affecting this
problem are tabulated below as error limits at the
95% confidence level. The numerical values are based
on information given in ISO 4360. It is recommended,
however, that each user determine independently the
values of the errors for any particular measurement.
(See table 14)
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Stilling weit

Table 14 — Error element values

(28’)
random (B)
error systematic
Nominal limit error
Variable Units value (28:95%) limit
h m 0.67 0.003 0.003
0.45% 0.45%
b m 10.00 0. 0.01
0.1%
CiC, - 1.226 0.5% 1.5%
g m/s’ 9.81 0. 0.




Substitution of the nominal values into the discharge
equation yields

Q = (3/2)"* x (1.226) x \/9.81 x 10 x (0.67)"2

11.46 m’/s

Evaluation of the random errors yields

287,

]

J05F + (3/2F (0.45]

0.84%

Evaluation of the systematic errors yields

B’y = (157 + (0.1 + (3/2)7(0.45)

i

1.65%

- Combining the random and systematic errors by the
root-sum-square (RSS) method yields

.L]"Q95 = \[(28’3 + BIQ IJVQ99 = qu + 2S’Q
= {0-847 + (1.657 - 1.65+0.84
=1.85% = 2.49%

B.3.4 Presentation of results

The discharge Q may be reported as follows:

Discharge 6m3/s
(Combined) uneertainty, U'Qg 5 %
(Combined) uncertainty, U’Q99 2.5%
Random error (28'p) 0.8%
Systematic error (B’g) 1.6%

Uncertainties calculated in accordance with ISO
5168.

Annex C — Small sample methods
C.1 Student’st.

When the experimental standard deviation is based
on small samples (N < 30), uncertainty is defined as:
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U = B+ t,S
ADD tos (86)
Ugss = \/B2 + (t%S)E
(87)
For  these small  samples, the interval

[X - tes8/yN, X + t4:S/{N] will contain the true

unknown average, t, 95% of the time. If the systemat-
ic error is negligible, this statistical confidence inter-
val is the uncertainty interval. ty; is the 95th percen-
tile point for the two-tailed Students t-distribution.
For small samples, t will be large, and for larger
samples t will be smaller, approaching 1.96 as a lower
limit. The t-value is a function of the number of
degrees of freedom (v) used in calculating S. Since 30
degrees of freedom (v) yield a t of 2.05 and infinite
degrees of freedom yield a t of 1.96, an arbitrary
selection of t = 2 is used for simplicity for values of v
from 30 to infinity. See table 15.

C.2 Degrees of freedom for small samples

In a sample, the number of degrees of freedom (v) is
the sample size, N. When a statistic is calculated from
the sample, the degrees of freedom associated with
the statistic is reduced by one for every estimated
parameter used in calculating the statistic. For exam-
ple, from a sample of size N, X is calculated and has
N degrees of freedom, and the experimental standard
deviation, S, is calculated using equation (1), and has
N-1 degrees of freedom because X is used to
calculate S. In calculating other statistics, more than
one degree of freedom may be lost. For example, in
calculating the standard error of a curve fit, the
number of degrees of freedom which are lost is equal
to the number of estimated coefficients for the curve,
N-2 '

When all random error sources have large sample
sizes (i.e., Vi > 30) the calculation of is unnecessary
and 2 is substituted for ty;. However, for small
samples, when combining experimental standard de-
viations by the root-sum-square method (see equation
(20) for example), the degrees of freedom (v) associ-
ated with the combined experimental standard devia-
tions is calculated using the Welch-Satterthwaite
formula (88).



For example: the degrees of freedom for the calibra-
tion experimental standard deviation (S,;) given by
equation (20), is:

(1)

: 2 2 2 22
=1 (St Syt Sg+ Su)

vy = = 1 3 1 1
4 " Sh 2t 31 Si
2 = Vi Vor Va1 Vq

i1 Vit (88)

where v;; is the degrees of freedom of each elemental
experimental standard deviation in the calibration
process.

The degrees of freedom for the measurement experi-
mental standard deviation (S), as given by equation
(21) 1s:

vV =
3 K 8§
D
=1 =t Vi (89)

If the test result is an average, X, based on a sample
of size N,

S: = Sx

TN (90)

As \/N is a known constant, the degrees of freedom

of S; is the same as S, i.e.

Vg = V
5 (91)

Table 15 — Two-tailed student’s “t” table

SMALL SAMPLE METHODS

Degrees of freedom < 30

Deagrees of Degrees of
freedom tes freadom tos
1 12.708 17 2,110
2 4.303 18 2.101
3 3.182 19 2.093
4 2.776 20 2.088
5 2.571 21 2.080
8 2.447 22 2.074
7 2.365 23 2.089
8 2.308 24 2.084
9 2.282 25 2.080
10 2.228 26 2.058
11 2.201 27 2,052
12 . 2.179 28 2.048
13 2.160 29 2.045
14 2,145 @ 1.96
15 2.131
18 2.120

C.3 Propagating the degrees of freedom

The Student’s t value of table 16 to be used in
calculating the uncertainty of the test result (equa-
tions (86) or (87)) is based on v, the degrees of
freedom of S. If the degrees of freedom of any
measurement standard deviation is less than 30, the
degrees of freedom of the result also may be less than
30. In such cases, the following small sample method
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Two-tailed student’s “1” table

X

30 or more use 2.0

may be used to determine v,. This is defined for the
absolute experimental standard deviation according
to the Welch-Satterthwaite formula by:

g¢
V., =
i (8,8, )
Yy ="
=1 Vp- (92)



and for the relative experimental standard deviation
by:

(8/r)

vl.'
i 6, S,. /P
i=1 Vpi. (93)
where
S, = \,):‘(Gi S;)2

and the degrees of freedom of the experimental
standard deviation (Sp ) of the independent measure-
ments is usually given By:

NOTE: The degrees of freedom for the relative and
absolute experimental standard deviations are identi-
cal.

Welch-Satterthwaite degrees of freedom may contain
fractional, decimal parts. The fractions should be
dropped or truncated as rounding down is conserva-
tive with Student’s t, i.e. v = 13.6 should be treated as
v=13.0.

Annex D — Quitlier treatment
D.1 Generai

All measurement systems may produce spurious data
points. These points may be caused by temporary or
intermittent malfunctions of the measurement sys-
tem or they may represent actual variations in the
measurement. Errors of this type should not be
included as part of the uncertainty of the measure-

Ver = (Ni— 1) (94) ment. Such points are meaningless as test data. They
should be discarded. Figure 20 shows a spurious data
point called an outlier.

Spurious Data Point

o

>
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; - .

S % p 4 % X e Random

X xx pod Error
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Figure 20 — Outlier outside the range of acceptable data

All data should be inspected for spurious data points
as a continuing check on the measurement process.
Points should be rejected based on engineering analy-
sis of instrumentation, thermodynamics, flow profiles
and past history with similar data. To ease the burden
of scanning large masses of data, computerized rou-
tines are available to scan steady-state data and flag
suspected outliers. The flagged points should then be
subjected to an engineering analysis.
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The effect of these outliers is to increase the random
error of the system. A test is needed to determine if a
particular point from a sample is an outlier. The test
should consider two types of errors in detecting
outliers:

(1) Rejecting a good data point
(2) Not rejecting a bad data point



The probability for rejecting a good point is usually
set at 5%. This means that the odds of rejecting a
good point are 20 to 1 (or less). The odds will be
increased by setting the probability of (1) lower.
However, this practice decreases the probability of
rejecting bad data points. The probability of rejecting
a good point will require that the rejected points be
further from the calculated mean and fewer bad data
points will be identified. For large sample sizes,
several hundred measurements, almost all bad data
points can be identified. For small samples (five or
ten), bad data points are hard to identify.

One test in common usage for determining whether
spurious data are outliers is Grubbs’ Method.

D.2 Grubbs’ method

Consider a sample (X;) of N measurements. The
mean (X) and an experimental standard deviation
(S) are calculated by equation (1). Suppose that (Xj),
the j-th observation, is the suspected outlier; then, the
absolute statistic calculated is:

Using table 16, a value of T  is obtained for the
sample size (N) and the 5% significance level (P).
This limits the probability of rejecting a good point to
5%. (The probability of not rejecting a bad data point
is not fixed. It will vary as a function of sample size.

The test for the outlier is to compare the calculated
T, with the table T .

If T, calculated is larger than or equal to T, table, we
call X; an outlier.

If T, calculated is smaller than T, table, we say X; is
not an outlier.
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Table 16 — Rejection values for Grubbs’ method

Sample 5% Sample 5%

size N (1-sided) size (1-sided)
3 - 1.150 20 2.56
4 1.46 21 2.58
5 1.67 22 2.60
6 1.82 23 2.62
7 1.94 24 2.64
8 2.03 25 2.66
9 2.11 30 2.75
10 2.18 35 2.82
11 2.23 40 2.87
12 2.29 45 2.92
13 233 50 2.96
14 2.37 60 3.03
15 2.41 70 3.09
16 2.44 80 3.14
17 247 20 3.18
18 2.50 100 3.21
19 2.53

D.3 Example
In the following sample of 40 values,

26 79 58 24 1 -103 —-121 -220
-11 137 120 124 129 -38 256 —60
—148 —-52 -216 -~12 —56 89 8 -29
-107 20 9 —40 40 - 2 10 166
126 —-72 179 41 127 -35 334 -—b55

suspected outliers are 334 and -555 (underlined).

To illustrate the calculations for determining whether
-555 is an outlier from figure 21.

Mean X) =
Exp. Std. Dev. =
Sample Size =

=565 - 1.125
140.813 6

Beaic

1.125
140.813 6
40

= 3.95

from table 16 using Grubbs’ Method for N =40 @ 5%
level of significance (one-sided),

T = 287

Therefore, since 3.95 > 2.87

(Tnmlc) > (Tntable)

—555 is an outlier according to Grubbs’ test.



Sample | Experimental Figure 21 is a normal probability plot of this data
Suspected | Calculated | Table Tn size standard Mean A . L. . )
outlier Tn P=5 (N) deviation(s) X with the suspected outliers indicated. In this case, the
-555  |3.95 2.87 40 140.8 1125 engineering analysis indicated that the —555 and 334
334 |2.91 (stop) 2.86 39 109.6 15.385 : . . . ,
Zoo0  l2a3 285 2 o8 7000 readings were outliers, agreeing with the Grubbs’ test
results.
800
600
400 e
200
©XkS]
. 0
& DIC
,-:: -200 o Rejects Denoted.
° / G — Grubbs
-400 = —_—
- Mean 1.125000
/ o . Std. Dev. 140.8138
~ -600 N . 40
Data is Not Normat
at 30 PCT. Confidence
-800
! I I |
-1000 ' L l ; | | R bl [ |
0.01 'XE 1 10 . 53.99

Cumulative Frequency - Percent

Figure 21 — Results of outlier tests

Annex E — Statistical uncertainty intervals

It is usually impossible to determine the statistical
distribution of the systematic errors () because they
are usually subjective judgments, i.e. not based on
data. However, if there is information to justify a
distribution assumption, it is possible to use rigorous
statistical methods to calculate the uncertainty inter-
val. The validity of this assumption must be left to
the judgement of the reader. The purpose of this
annex is to describe the methods, given the assump-
tion.
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FQ 129TaT

E.1 Assumed systematic error distribution

If it is assumed that the systematic errors (B) are
actually the maximum possible upper and lower limit
of the true, unknown systematic error (B), and that
is equally probable anywhere within the limits, then
the standard deviation of the systematic error may be
determined by

B

Op = ——
B \/,3

(95)

As depicted in figure 22.



The validity of this assumption cannot be proved or
disproved. It is a matter of judgement.

E2 Uggs

The systematic error limit of the measurement result
may be calculated as before

B -, / § (OB,

The experimental standard deviation of the systemat-
ic error is estimated as:

(96)

g - B
RN (97
The uncertainty is
Upss = (1.645 Sp¥ + (2S)
s = (1685 S 7 (25) 8

for large samples, where S is the experimental
standard deviation of the random error.

Assuming there are many sources of systematic and
random errors, say ten or more, the Central Limit
Theorem states that sums of samples taken from any
distribution(s) will tend toward normality. Therefore,
the true error (8) should be distributed as a normal
distribution with standard deviation equal to the
root-sum-square of the systematic and random error
experimental standard deviations. This will be illus-
trated in E.4. If small samples are used to estimate
the random error experimental standard deviations,

FREQUENCY

Student’s t and the Welch-Satterthwaite approxima-
tion will be needed as described in annex C.

E.3 Uppp

With the additive model of uncertainty, the assumed
distribution does not affect the answer. The system-
atic error, B, is still determined as equation (96) and
there is no advantage to calculating a standard
deviation of systematic error.

UA.DD = B + tgss (99)

E.4 Monte Carlo example

To illustrate the Central Limit Theorem, the sum of a
random sample from each of the ten rectangular
distributions with means zero was repeated 1000
times. In sets of three, the distributions had ¢ = 0.5,
1.0, 2.0 respectively, and the tenth, ¢ = 4.0. If the
tendency toward normality and the Monte Carlo
simualtion were both perfect

(o}

[

v3(0.5" + 1.0° + 2.0°) + 4°

5.585.

The average S for 1000 trials was S = 5.671. The
results are shown in figure 23. The bell shape of the
normal distribution is apparent. A goodness-of-fit
test could not reject normality at the 90% level of
confidence.

0=BA\3

-B

Figure 22 — The assumed frequency rectangular distribution of the systematic error (B) as a function of

the limit B.
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Figure 23 — Distribution of sum of 10 rectangular systematic errors

Annex F: Uncertainty interval coverage
Introduction

A rigorous calculation of confidence level or the
coverage of the true value by the interval is not
possible because the distributions of systematic error
limits, based on judgement, cannot be rigorously
defined. Monte Carlo simulation of the intervals can
provide approximate coverage® based on assuming
. various systematic error limits.

F.1 Simulation results

As the actual systematic error and systematic error
limit distributions will probably never be known, the
simulation studies were based on a range of assump-
tions. The result of these studies comparing the two
intervals are:

" Coverage as. used herein is the proportion of Monte Carlo trials
where the measurement uncertainty interval contains the true
value.

Q2607
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a)

b)

c)

d)

U,yg averages approximately 99.1% coverage
while Uy provides 95.0% based on system-
atic error limits assumed to be 95%.

For 99.7% systematic error limits, Uy
averages 99.7% coverage and Ug;, 97.5%.

The ratio of the average Uy, interval size to
Ugs interval size is 1.35:1.

If the systematic error is negligible, both
intervals provide a 95% statistical confi-
dence (coverage).

If the random error is negligible, both
intervals provide 95% or 99.7% depending
on the assumed systematic error limit size.



Assumptions and Simulation Cases Considered

(1)

(2)

(3)

(4)

(5)

From 3 to 10 error sources, both systemat-
ic and random

Systematic errors distributed both nor-
mally and rectangularly

Random error distributed normally
Systematic error limits at both 95% and
99.7% for both the normal and the rectan-

gular distributions

Sample standard deviations based on sam-
ple sizes from 3 to 30

Table 17 — Uncertainty intervals defined by
non-symmetrical systematic error limits

Ugp Uss
(Lower limit (Upper limit
B~ B+ tesSy for U) for U)
0deg K |+10 deg K |2 deg K |2 deg K +12 deg K
-3 Kg |[+13 Kg 21 -7 Kg +17 Kg
0P, +7 P, 2P, ~2 P, +9 P,
~8 deg K|0 deg K 2deg K | —10 deg K +2 deg K

nIane
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(6) Ratio of random to systematic errors at
1/2, 1.0 and 2.0.

F.2 Non-symmetrical interval

If there is a non-symmetrical systematic error limit,
the uncertainty (U) is no longer symmetrical abhout
the measurement. The interval is defined by the
upper limit of the systematic error interval (B)*. The
lower limit is defined by the lower limit of the
systematic error interval (B)~. (see clause 7.3)

Figure 24 shows the uncertainty (U ) for non-sym-
metrical systematic error limits. (See table 17.)

U*=B* +ty8 ~(100)



Measurement

Figure 24 — Measurement uncertainty; non-symmetrical systematic error

Uncertainty Interval

(The True Value Should Fall Within This interval)
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S -




